The electricidal effect: reduction of Staphylococcus and pseudomonas biofilms by prolonged exposure to low-intensity electrical current.
نویسندگان
چکیده
The activity of electrical current against planktonic bacteria has previously been demonstrated. The short-term exposure of the bacteria in biofilms to electrical current in the absence of antimicrobials has been shown to have no substantial effect; however, longer-term exposure has not been studied. A previously described in vitro model was used to determine the effect of prolonged exposure (i.e., up to 7 days) to low-intensity (i.e., 20-, 200-, and 2,000-microampere) electrical direct currents on Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis biofilms. Dose- and time-dependent killing was observed. A maximum of a 6-log(10)-CFU/cm(2) reduction was observed when S. epidermidis biofilms were exposed to 2,000 microamperes for at least 2 days. A 4- to 5-log(10)-CFU/cm(2) reduction was observed when S. aureus biofilms were exposed to 2,000 microamperes for at least 2 days. Finally, a 3.5- to 5-log(10)-CFU/cm(2) reduction was observed when P. aeruginosa biofilms were exposed to electrical current for 7 days. A higher electrical current intensity correlated with greater decreases in viable bacteria at all time points studied. In conclusion, low-intensity electrical current substantially reduced the numbers of viable bacteria in staphylococcal or Pseudomonas biofilms, a phenomenon we have labeled the "electricidal effect."
منابع مشابه
Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species
Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of bi...
متن کاملAntibiofilm Activity of Electrical Current in a Catheter Model.
Catheter-associated infections are difficult to treat with available antimicrobial agents because of their biofilm etiology. We examined the effect of low-amperage direct electrical current (DC) exposure on established bacterial and fungal biofilms in a novel experimental in vitro catheter model. Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Ca...
متن کاملThe Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study
Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...
متن کاملRelationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملInvestigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms
Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2009